
James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 
 

 

MSc Computer Animation and Visual Effects 

 
Masters Project 

 
 

Implementing Flame using a Mass 
Spring System 

 

August 2019 

 

 

 

 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

2 | P a g e  
 

Contents 
Abstract................................................................................................................................. 4 
Introduction ........................................................................................................................... 4 
Literature Review .................................................................................................................. 5 
Implementation ..................................................................................................................... 7 

Integration ......................................................................................................................... 7 
Internal Forces ............................................................................................................... 8 
External Forces .............................................................................................................. 8 

Textures ............................................................................................................................ 9 
User Interface .................................................................................................................. 10 

Results ................................................................................................................................ 12 
Analysis .............................................................................................................................. 16 
Conclusion .......................................................................................................................... 17 
Future Work ........................................................................................................................ 17 
References ......................................................................................................................... 18 

Figures ............................................................................................................................ 19 
 

 

 

  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

3 | P a g e  
 

Figures 
Figure 1: A Silk Torch [IntaSound P.A 2014] ....................................................................... 4 
Figure 2: Springs on a 2D Grid [Lengyel 2012, pg. 458] ...................................................... 5 
Figure 1: The Equation for Hooke's Law [Millington 2010, pg.89] ....................................... 6 
Figure 3: The 8 textures used ............................................................................................... 9 
Figure 4: The code running using the cloth texture ................................................................ 9 
Figure 5: The user interface ................................................................................................ 10 
Figure 6: The Project UI ...................................................................................................... 10 
Figure 7: The FPS counter .................................................................................................. 10 
Figure 8: The Forces UI ...................................................................................................... 11 
Figure 9: The Draw UI ......................................................................................................... 11 
Figure 10: A graph showing the FPS of machine 1 ............................................................. 12 
Figure 11: A graph showing the FPS of machine 2 ............................................................. 13 
Figure 12: A graph showing the FPS of machine 3 ............................................................. 14 
Figure 13: A graph showing the FPS of machine 4 ............................................................. 15 
Figure 14: An example of the generated flame movement. ................................................. 16 
  

Tables 
Table 1: The FPS of Machine 1 ........................................................................................... 12 
Table 2: The FPS of Machine 2 ........................................................................................... 13 
Table 3: The FPS of Machine 3 ........................................................................................... 14 
Table 4: The FPS of Machine 4 ........................................................................................... 15 
 

Equations 
Equation 1: f=ma ................................................................................................................... 7 
Equation 2: a=f/m .................................................................................................................. 7 
Equation 3: a*dt .................................................................................................................... 7 
Equation 4: Hooke’s Law [Millington 2010, pg.89] ................................................................. 8 
 

 

 

 

 

  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

4 | P a g e  
 

Abstract 
Fire simulation is a topic in computer graphics that has multiple different methods of being 
achieved. The different methods have 3 main categories; texture, particle and physics based 
[Ren & Jin & Chen 2009]. These tend to be used for different purposes, with physics-based 
systems being used for realism and texture-based systems being used for real time 
applications. A paper from 2006 proposed a method of fire simulation by using a mass 
spring method [Balci & Foroosh 2006]. This project is to implement flame using the same 
concept as this paper and to see if this method is effective with modern day machines. 

 

Introduction 
A paper from 2006 proposed a method of fire simulation by using a mass spring method 
[Balci & Foroosh 2006]. The mass spring method is a method that is typically used to 
simulate cloth and the paper from 2006 claims that the idea is based on the old physical 
arrangement of a Silk Torch, where cloth is used to give the illusion of flames [Balci & 
Foroosh 2006].  

Using mass spring systems to create a cloth simulation is concept that has been in computer 
graphics for a long time. A paper on the topic was published in 1987 about Elastically 
Deformable Models using a series of mass, springs and dampers to simulate cloth 
[Terzopoulos et al. 1987]. 

The Silk Torch can be traced back to ancient Greece. It is used by magicians to fool 
spectators into believing that it is a real flame [Balci & Foroosh 2006]. It has uses in 
modern applications such as for theme park rides or just for decorative purposes such as an 
artificial fireplace [Balci & Foroosh 2006]. 

This project will be implementing the concept of a Silk Torch using a simpler version of the 
mass spring method than the one that was used in the original paper from 2006. 

 

 
Figure 1: A Silk Torch [IntaSound P.A 2014] 

  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

5 | P a g e  
 

Literature Review 
Fire simulation has multiple methods that can be used to implement it. The different methods 
have 3 main categories; texture, particle and physics based [Ren & Jin & Chen 2009]. 

Possibly the most common method used in real time applications such as computer games 
is the texture method. The texture method is a simple method where an animated texture of 
a flame is placed on a plane that is set to always face the camera and is called the billboard 
method [Gao & Ma 2010]. 

The method that is used to create the most realistic looking fire is utilising fluid dynamics. 
The motion of fluids can be calculated by the numerical analysis of the Navier-Stokes 
equations [Dobashi 2009], however as a by-product of the complexity of the calculation’s 
fluid dynamics are not really used for real time rendering as most machines would not be 
able to handle it. 

The basic principle of a particle system is to use a group of particles to create a fuzzy object 
[Qian et al. 2010]. The particles all have their own properties, such as size and colour and 
the particles have 3 phases, the production movement and disappearance [Qian et al. 
2010]. A paper in 2010 talks about combining a particle system with a texture method to try 
and increase the realism of the particle-based system [Gao & Ma 2010]. 

For this project the method that will be used will be for cloth simulation, instead of fire 
simulation. As such it is important to investigate the different types of cloth simulation.  
The Mass-Spring model from a paper by Xavier Provot is one that is made up of number of 
virtual masses and springs, with three different types of spring acting upon it. These springs 
are called shear springs, structural springs and flexion springs [Provot 1995]. The method 
also uses dampeners for the springs. In figure 2 you can see how the springs are arranged 
with red lines being the structural springs, the green lines being the flexion springs and the 
blue lines being the shear springs. 

 
Figure 2: Springs on a 2D Grid [Lengyel 2012, pg. 458] 

 

 

 

 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

6 | P a g e  
 

 

In order to calculate the mass spring method, then it is important to understand how springs 
work. The equation that is used to calculate the force on a spring is called Hooke’s Law 
[Millington 2010, pg.90]. Hooke’s Law works out the value of the spring force by multiplying 
the negative of the spring constant by the change in length of the spring. This method can be 
simplified into just using the structural springs along with a damper. 

 

 

𝑓𝑓 =  −𝑘𝑘∆𝑙𝑙 

Figure 3: The Equation for Hooke's Law [Millington 2010, pg.89] 

 

 

The paper from 2006 measured the frame rate that the mass spring method to help show the 
effectiveness of the fire in real time. The frame rate that they managed to get was 80FPS 
however the specification of the machine they give is 1024 x 768 on a 2.3GHz PC [Balci & 
Foroosh 2006]. As such this project will use this method to help demonstrate if this 
implementation is an effective one.  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

7 | P a g e  
 

Implementation 
As the purpose of this project is to test the effectiveness of using a mass spring method for 
flame simulation the implementation of the code base is quite important. However, as there 
is more than just cloth simulation required to create this effect, the spring method that has 
been implemented is a simple mass spring method, rather than an advanced version. 

 
Integration 
As part of the mass spring system the mass spring object updates by using integration. This 
is done by every update loop the internal forces and external forces acting upon the mass 
points are calculated and the applied. After the forces have been added, the net force is 
used to update the position of the mass points using a velocity calculated using the mass of 
the mass points. This is done using f=ma which can reordered to get the acceleration as 
a=f/m with the acceleration you can get the velocity using a*dt 

 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =  𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 ∗  𝒎𝒎𝒇𝒇𝒇𝒇𝒇𝒇𝒍𝒍𝒇𝒇𝒇𝒇𝒎𝒎𝒆𝒆𝒆𝒆𝒇𝒇𝒆𝒆 

Equation 1: f=ma 

 

𝒎𝒎𝒇𝒇𝒇𝒇𝒇𝒇𝒍𝒍𝒇𝒇𝒇𝒇𝒎𝒎𝒆𝒆𝒆𝒆𝒇𝒇𝒆𝒆 =  𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 / 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 

Equation 2: a=f/m 

 

𝒎𝒎𝒇𝒇𝒇𝒇𝒇𝒇𝒍𝒍𝒇𝒇𝒇𝒇𝒎𝒎𝒆𝒆𝒆𝒆𝒇𝒇𝒆𝒆 ∗  𝒅𝒅𝒇𝒇𝒍𝒍𝒆𝒆𝒎𝒎 𝒆𝒆𝒆𝒆𝒎𝒎𝒇𝒇 

Equation 3: a*dt 

 
  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

8 | P a g e  
 

Internal Forces 
The internal forces of the mass spring object are worked out using the mass spring system. 
A mass spring object is made up of an std::vector of mass points and a std::vector of 
springs. As this is a simple version of a mass spring system there are only two types of 
springs, horizontal and vertical springs.  

When the mass spring object is created a grid of mass points are created, the mass points 
all contain a value for their mass. Then the array of springs is created, every spring has a 
shared pointer to the mass point A and the mass point B that they are attached to. When 
they attach themselves to a mass point they send information about the spring back to the 
mass point so that the mass point has a record of what springs it is attached to. 

Every update loop the springs and mass points are updated which is when the spring forces 
are updated and applied to the mass points. The spring works out it’s force by first 
calculating the current length of the spring by getting the distance between point a and point 
b attached to the spring. Then the magnitude of the spring force is calculated using Hooke’s 
Law.  

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =  −𝒎𝒎𝒔𝒔𝒇𝒇𝒆𝒆𝒆𝒆𝒔𝒔 𝒇𝒇𝒇𝒇𝒆𝒆𝒎𝒎𝒆𝒆𝒎𝒎𝒆𝒆𝒆𝒆 ∗  𝒎𝒎𝒔𝒔𝒇𝒇𝒆𝒆𝒆𝒆𝒔𝒔 𝒍𝒍𝒇𝒇𝒆𝒆𝒔𝒔𝒆𝒆𝒍𝒍 

Equation 4: Hooke’s Law [Millington 2010, pg.89] 

In this equation the spring length is equal to the current spring length minus the rest length of 
the spring. The spring direction is then calculated by normalising the resultant vector of the 
position of point B minus the position of point A. The spring force is then calculated by 
multiplying the magnitude by the direction. 

The spring force on the mass point is based on the if the spring is pointing A to B or B to A, 
as this effects the direction the spring force is acting upon the mass point. 

 

External Forces 
As part of the mass spring system the spring mass object has external forces acting upon it. 
The external forces that are implemented in this code are wind and the buoyancy of the 
flame. 

When simulating flame using particle simulation, they apply a force of buoyancy [Qian et al. 
2010] for the up force of the flames. For this code base, instead of having a constant force of 
gravity acting upon the cloth down, there is instead a force acting up on the cloth that is 
named buoyancy and with the bottom row of mass points locked the cloth essentially falls 
upwards giving the impression of the flame rising and lowering. This is applied to the mass 
spring objects every update loop. 

For simulating wind in this code base the wind acts on the mass spring object using an 
impulse system. This means that the force of the wind is applied to the mass spring object 
for a certain amount of time, then not applied for a certain amount of time and then applied 
and so on. This is to give the rolling effect of the wind on the mass spring object to help the 
flame appear to flicker in the wind. The default time that the wind impulse is on for 1 second 
and off for 5 seconds. 

The force of the wind is a vec3 that applies to the mass points as an external force with its 
direction and magnitude. The external forces are all added together and stored in the mass 
points within the mass spring objects.  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

9 | P a g e  
 

Textures 
In order to create a flame from a cloth simulation the texture is a key part of the process. In 
the paper that concept of this implementation is based on, they used texture sequencing with 
variable transparency using a randomly chosen image of a flame [Balci & Foroosh 2006]. 
They found that only a small number of texture images was required, giving an example of 
using 8 textures [Balci & Foroosh 2006]. 

However, as this project has a shorter timeframe and has only on person working on it, the 
method of the texturing for this implementation is a simplified version. The flames are 
initialised with a random texture of a flame, with 8 possible textures available. While this 
does not provide as much realism it does give more control to the artists as they can create 
the flame textures to be used with the implementation. The textures that have been used in 
this implementation have been generated using Houdini. 

 
Figure 4: The 8 textures used 

In this code base there is also the option of disabling the flame texture to provide a solid 
cloth texture to show of the cloth simulation underneath. 

 
Figure 5: The code running using the cloth texture 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

10 | P a g e  
 

User Interface 
In order to help with the running the code and testing the method a user interface was 
required to allow real time control of the flames. The UI is created using NGL working with 
Qt. 

 
Figure 6: The user interface 

 

The UI has been split into 3 different sections. These sections are Project, Forces and Draw. 
Inside the Project section there is the button for running the program and a button to reset 
the currently running simulation. 

 

 
Figure 7: The Project UI 

 

On the left of the screen there is also a frame rate counter that is for helping collect the 
performance data of the program. This will display 0 until run has been pressed. 

 

 
Figure 8: The FPS counter 

 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

11 | P a g e  
 

Under the Forces section is two tabs for the internal and external forces. The internal tab you 
can change the spring constant, the damping value, the mass and the rest length. The 
external forces tab contains the flame buoyancy (the force acting up), the time for the wind 
impulse to be on, the time for the wind impulse to be off and the wind force vector. 

 

 
Figure 9: The Forces UI 

 

Under the draw section is the wireframe toggle and a textured toggle that will turn on or off 
the flame texture. There is also a drop-down box for the number of flames to put in the 
scene. 

 

 
Figure 10: The Draw UI 

  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

12 | P a g e  
 

Results 
In order to test the effectiveness of using the mass spring method for flame, the code was 
run on 4 different machines of varying specification. The frame rate that the code ran at was 
recorded with different numbers of flames on the screen at a time. This was so that it’s 
effectiveness in real time applications could be assessed. 

Machine 1 Specifications: 
Processor – Intel (R) Xeon (R) CPU E5-1650 v3 @ 3.50GHz 
Memory - 32GiB RAM 
Graphics - NVIDIA Corporation GM204GL [Quadro M4000] 

Number of Flames FPS 1 FPS 2 FPS 3 FPS Average 
1 953 915 934 934 
4 907 890 869 888.67 
9 670 596 581 615.67 

16 347 381 349 359 
25 275 236 248 253 
36 170 198 187 185 
49 156 140 127 141 
64 120 110 97 109 
81 103 94 99 98.67 

100 74 65 67 68.67 
121 55 53 57 55 
144 45 50 48 47.67 

Table 1: The FPS of Machine 1 

 
Figure 11: A graph showing the FPS of machine 1 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

13 | P a g e  
 

Machine 2 Specifications: 
Processor - Intel (R) Core (TM) i7-7700K CPU @ 4.20GHz 
Memory - 16GiB RAM 
Graphics - NVIDIA GeForce GTX 780 

 

Number of Flames FPS 1 FPS 2 FPS 3 FPS Average 
1 943 940 937 940 
4 940 943 934 939 
9 903 882 895 893.33 

16 559 546 558 554.33 
25 377 374 378 376.33 
36 270 266 275 270.33 
49 203 199 201 201 
64 155 154 151 153.33 
81 119 125 121 121.67 

100 97 100 102 99.67 
121 85 84 82 83.67 
144 70 71 72 71 

Table 2: The FPS of Machine 2 

 

 
Figure 12: A graph showing the FPS of machine 2 

 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

14 | P a g e  
 

Machine 3 Specifications: 
Processor - Intel(R) Core (TM) i7-4700MQ CPU @ 2.40GHz 
Memory - 8GiB RAM 
Graphics - NVIDIA Corporation GK106M [GeForce GTX 765M] 

 

Number of Flames FPS 1 FPS 2 FPS 3 FPS Average 
1 946 952 939 945.67 
4 924 917 933 924.67 
9 609 602 591 600.67 

16 363 376 379 372.67 
25 248 251 241 246.67 
36 180 179 181 180 
49 135 131 134 133.33 
64 104 102 105 103.67 
81 83 84 81 82.67 

100 68 67 65 66.67 
121 57 56 55 56 
144 47 48 49 48 

Table 3: The FPS of Machine 3 

 

 
Figure 13: A graph showing the FPS of machine 3 

  

 



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

15 | P a g e  
 

Machine 4 Specifications: 
- Intel (R) Core (TM) i3-5010V CPU @ 2.10GHz 
- 8GiB RAM 
- Intel HD graphics 5500 

 

Number of Flames FPS 1 FPS 2 FPS 3 FPS Average 
1 188 190 193 190.33 
4 168 166 163 165.67 
9 138 144 141 141 

16 114 111 110 111.67 
25 87 85 88 86.67 
36 76 71 72 73 
49 60 61 59 60 
64 48 47 49 48 
81 39 40 41 40 

100 32 33 35 33.33 
121 29 28 30 29 
144 25 24 26 25 

Table 4: The FPS of Machine 4 

 

 
Figure 14: A graph showing the FPS of machine 4 

  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

16 | P a g e  
 

Analysis 
After collecting the frame rate data, several observations can be made. One being that the 
relationship between the number of flames in a scene and the frame rate is not linear.  

This means that for every new instance of a mass spring object that is added to the scene 
the increase in the amount of calculations is not same meaning that the O notation of the 
algorithm that is being run is not O(n). 

Looking at the way that the line in the graphs are shown for all the machines it appears that 
the relationship between the frame rate and the number of flames has a small curve at first, 
followed by a dramatic drop that slowly evens back out. This in fact looks like exponential 
decay which means that it drops dramatically at first but then evens itself out. 

As this curve appears to happen on all of the machines it is likely that 144 flames is reaching 
the limit of the amount of these flames that can be in a scene at a time for use with real time 
applications as most real time applications run at either 30FPS or 60FPS. At 144 flames all 
the machines had fallen under 60FPS and the lowest powered machine had fallen bellow 
30FPS, however in most situations it would be unlikely that the scene would contain more 
than 144 flames in it. 

However, this application is only testing the movement aspect of the flames, when you add 
in lighting calculations this could change the results, but for the purpose of the results in this 
paper this does seem to be an effect method of simulating flames in real time. 

From a perspective of being able to technically run as required for implementing flame in real 
time applications this seems to point towards the mass spring method being a viable one, 
however there is another factor that has yet to be mentioned and that is the visual one. Even 
if it was the most efficient implementation possible, if the way that it visually looks is incorrect 
then it still fails as a flame. 

Obviously a large part of it effectiveness will be based on the textures used for the flame and 
the forces that are chosen to act upon it, however with the wind set to also push in a 
direction along the x axis it does produce an effect that is quite similar to how a flame would 
wave in the wind, with the buoyancy of the flame adding to the effect of the flame moving up 
and down.  

 
Figure 15: An example of the generated flame movement. 

It is not perfect and if you look carefully at the flame you can see it does not look exactly 
right however it does still give the effect of a moving flame and as long as the flame is 
intended to be a background feature it would work fine as a flame. It would not work well as 
a hero feature, however.  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

17 | P a g e  
 

Conclusion 
There are advantages and disadvantages to this method, the advantages being the 
interactivity that this method can do in real time. The wind direction can be changed along 
with multiple other variable to dynamically edit the way that the flames are moving inside the 
real time application whereas methods such as using an animated texture is a fixed 
animation that cannot be changed dynamically. However, the downside of this method 
against methods such as the animated texture is that it does require more processing power.  

Full fluid simulation for the fire simulation is not possible with real time graphics now, 
however it does create more realistic looking fire. Whereas the look of this method of fire 
simulation does not look realistic when up close however being used as a background flame 
it would work relatively well. 

As shown by the results of this project the mass spring method for fire simulation is 
reasonably efficient and can be used in real time applications without causing massive frame 
rate loss. 

In conclusion this method has a lot of potential as an alternative method to fire simulation in 
real time, however for it to be a fully viable option it will need to have some future work done 
to it. That said this project can be considered a success as it has proven the potential of 
mass spring systems being used for fire simulation. 

 

Future Work 
There is a lot of potential improvements that could be added to this method in the future. As 
shown in the existing paper on the subject it is possible to create much more realistic 
textures using variable transparency [Balci & Foroosh 2006] and this can be implemented 
into this codebase to improve its realism. 

In the same paper they talk about how they used a more advanced version of the mass 
spring system that also utilises energy that are based upon heat energy rather than just the 
mass spring forces on the mass spring object [Balci & Foroosh 2006]. This can also be 
implemented into the code in the future. 

If collision detection was added to the mass spring object, then the flames could be 
interacted with in applications such as games by the player and cause the flame to move out 
of the way of the player. 

Lighting is another function that could be implemented into the codebase in the future to help 
improve its realism. In idea could be to use a light map to apply to the texture so that when 
the texture moves and stretches then the light emitted would move with it causing the 
lighting environment to flick correctly. 

Once the extra features are added into the codebase then the codebase could be 
implemented into another pipeline, for example the flame method could be implemented into 
Unreal engine for use with real time applications.  



James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

18 | P a g e  
 

References 
 

Ren & Jin & Chen, H.R & Y.J & L.C, 2009. Realistic rendering of fire scene. 2009 11th IEEE 
International Conference on Computer-Aided Design and Computer Graphics., Huangshan, 
China, October 19th-21st 2009. IEEE. Available from: 
https://ieeexplore.ieee.org/document/5246848 [19th August 2019]. 

 

Balci & Foroosh, M.B & H.F, 2006. Real-time 3D fire simulation using a spring-mass model. 
12th International Multi-Media Modelling Conference, 2006, Beijing, China, Jan 4th-6th 2006. 
IEEE. Available from: https://ieeexplore.ieee.org/document/1651309 [19th August 2019]. 

 

Qian & Liu & Guann, D.Q & X.L & Y.G, 2010. Research on particle-based simulation for fire. 
2nd International Conference on Future Computer and Communication, 2010, Wuha, China, 
May 21th-24th 2010. IEEE. Available from: https://ieeexplore.ieee.org/document/5497793  
[19th August 2019]. 

 

Terzopoulos & Platt & Barr & Fleischer, D.T & J.P & A.B & B.F, 1987. Elastically deformable 
models. SIGGRAPH '87 Proceedings of the 14th annual conference on Computer graphics 
and interactive techniques, New York, USA, 1987. ACM. Available from: 
https://dl.acm.org/citation.cfm?id=37427 [19th August 2019]. 

 

Provot, X.P, 1995. Deformation constraints in a mass-spring model to describe rigid cloth 
behaviour. Proceedings of Graphics Interface ‘95, Québec, Canada, 1995. Canadian 
Human-Computer Communications Society. Available from: 
http://graphicsinterface.org/proceedings/gi1995/gi1995-17/  [19th August 2019]. 

 

Gao & Ma, X.G & X.M, 2010. Simulation of fire based on improved particle system and 
texture rendering. 2010 International Conference on Image Analysis and Signal Processing., 
Zhejiang, China, October 9th-11th 2010. IEEE. Available from: 
https://ieeexplore.ieee.org/document/5476049 [19th August 2019]. 

 

Millington, I.M, 2010. Game Physics Engine Development. Second Edition, Boca Raton: 
CRC Press 

 

Dobashi, Y.D, 2009. Simulation of various natural phenomena based on computational fluid 
dynamics. 11th IEEE International Conference on Computer-Aided Design and Computer 
Graphics, 2009, Huangshan, China, Aug 19th-21th 2009. IEEE. Available from: 
https://ieeexplore.ieee.org/document/5246811 [19th August 2019]. 

 

  

https://ieeexplore.ieee.org/document/5246848
https://ieeexplore.ieee.org/document/1651309
https://ieeexplore.ieee.org/document/5497793
https://dl.acm.org/citation.cfm?id=37427
http://graphicsinterface.org/proceedings/gi1995/gi1995-17/
https://ieeexplore.ieee.org/document/5476049
https://ieeexplore.ieee.org/document/5246811


James Ronald John Slowgrove ALS Marking Guidelines Student Reference: 4535556 

19 | P a g e  
 

Figures 
 

IntaSound P.A, 2014. New LED Flamelights to hire. IntaSound P.A. Available from: 
http://www.intasoundpa.co.uk/blog/uncategorized/new-led-flamelights-to-hire/ [19th August 
2019]. 

 

Lengyel, E., 2012. Mathematics for 3D Game Programming and Computer Graphics. Third 
Edition, Boston: Course Technology 

 

Millington, I., 2010. Game Physics Engine Development. Second Edition, Boca Raton: CRC 
Press 

 

http://www.intasoundpa.co.uk/blog/uncategorized/new-led-flamelights-to-hire/

	Abstract
	Introduction
	Literature Review
	Implementation
	Integration
	Internal Forces
	External Forces

	Textures
	User Interface

	Results
	Analysis
	Conclusion
	Future Work
	References
	Figures


